Family Bythograeidae: Highly Specialized Crabs

By Rachael Ragen, SRC intern

The Family Bythograeidae are marine crabs that live near thermal vents. Most of them are colorless, but some may be yellow in color. The eggs and megalopa, which is a post-larva stage of the crab, tend to be orange or red. This coloration is likely due to carotenoids produced by hydrothermal vent bacteria, on which the crabs may be preying. Bythograeidae crabs are influenced by their environment including gametogenesis, which is part of the reproduction process for crabs. As different biological factors in their surroundings fluctuate, the size of oocyst and the rate of gametogenisis also changes. Their climate is therefore incredibly important to their survival.

Bythograeidae crab [Leignel, V., L. A. Hurtado, and M. Segonzac. “Ecology, adaptation, and acclimatisation mechanisms of Bythograeidae Williams, 1980, a unique endemic hydrothermal vent crabs family: current state of knowledge.” Marine and Freshwater Research, 2018, 69, 1-15.]

Hydrothermal vents present a very extreme habitat since they are located in deep sea environments and thermal vents release hot clouds full of chemicals. These crabs must withstand a high pressure climate of about 125 atm and a low temperature of about 2 to 25ºC. The environmental factors also tends to fluctuate frequently. In response to the fluctuations in their surroundings, these crabs are osmoconformers, meaning they can handle changes in salinity. Despite the importance of their environmental factors, there is not a distinct pattern in biogeography.

hydrothermal vent []

As a result of their harsh living conditions, these crabs have developed many specialized behaviors. Since hydrothermal vents release a large amount of chemicals, these crabs must actively remove chemicals from their system. They are also able to handle higher metal concentrations due to episymbiotic bacteria, which has a symbiotic relationship with the crabs and lives on their shell, which aids in detoxification. Studies have shown that the crucial factor for these crabs is temperature and suffer once past their ideal range.

Works Cited:

Leignel, V., L. A. Hurtado, and M. Segonzac. “Ecology, adaptation, and acclimatisation mechanisms of Bythograeidae Williams, 1980, a unique endemic hydrothermal vent crabs family: current state of knowledge.” Marine and Freshwater Research, 2018, 69, 1-15.


Swimming and Diving Energetics of Dolphins Can Help Predict the Cost of Flight Response in Wild Odontocetes

By Chelsea Black, SRC MPS student

There are many occasions when high-speed swimming might be demanded by free-ranging marine mammals. This behavior will come at an energetic cost to the animal, which is why it is usually only performed when necessary for survival of the animal. Williams et al. (2017) demonstrates the physiological consequences of oceanic noise on diving mammals, in the hopes of providing a tool for predicting the biological significance of escape responses by cetaceans facing anthropogenic disturbances.

The physiological response of fleeing marine mammals has been challenging to study due to the difficulty of simultaneously measuring both metabolic rate and swimming behavior in free-ranging cetaceans like dolphins and whales. Studies performed in lab settings can provide invaluable information to answer these unknowns. In a study by Williams et al. (2017), the energetic cost of producing a swimming stroke by exercising and diving bottlenose dolphins was measured by calculating oxygen consumption and stroking kinematics of trained bottlenose dolphins (Tursiops truncatus) and one killer whale (Orcinus orca). The animals were housed in saltwater pools at Long Marine Laboratory in Santa Cruz, where they were trained to either voluntarily rest or exercise at various levels. To measure the energetic cost of diving, the dolphins were fitted with a submersible accelerometer recorder and performed three different experimental conditions: voluntary rest at the surface, rest while submerged, and submerged swimming and diving exercises. The results show little change in oxygen consumption between rest and routine swimming speeds, most likely due to the animal’s exceptional streamlined bodies that minimize hydrodynamic resistance. In contrast, there was a marked increase in oxygen consumption during higher level performances such as high-speed swimming, which affected the total amount of oxygen utilized during the dive (Williams et al., 2017).


Figure 1: Dolphins breathe into a metabolic hood to analyze respiration (Williams et al., 2017).

Diving mammals must balance both speed and the duration of breath-holds, with limited available oxygen stores to minimize their energetic costs (Williams et al., 2017). High-speed swimming, increased stroke frequencies and rapid ascent from depth are commonly reported for wild tagged cetaceans following exposure to noise (Todd et al., 1996; DeRuiter et al., 2013). This particular response to noise exposure has been suggested as a cause for many marine mammal strandings, but scientists are less certain about how these responses translate into physiological costs to the animal.

The cost of flight by odontocetes is likely more complicated than counting the number of swimming strokes during a dive, therefor, the gait of the animal must also be considered. After using the calculations gathered from dolphins, Williams et al. (2017) could test the energetic cost of a dive after exposure to anthropogenic noise in the Cuvier’s beaked whale (Ziphius cavirostris), a deep diving odontocete considered to be particularly sensitive to underwater noise. In a dive without noise exposure, the whale spent over four minutes gliding on descent, however, when exposed to noise disturbance the whale did not use this energy-saving swim style, which increased its energetic cost.

Figure 2: Behavioral response of Cuvier’s beaked whale to anthropogenic noise (Williams et al., 2017).


Overall, the beaked whale did not exceed its dive limit by reducing its depth and duration of the dive after a noise exposure while also increasing the use of energetically costly high-speed strokes. By using this combination, the whale was able to keep the proportion of available oxygen expended below the total amount available. Conversely, long and deep dives that exceeded one hour and 1000 m that occurred after sonar exposure, exceeded the oxygen stores. A common strategy for reducing energetic costs during these extreme dives was prolonged gliding during descent, which suggests that the role of swimming style is crucial in deep-diving species.

The data gathered from bottlenose dolphins and an orca provided a basis for applying the principals to wild marine mammals, illustrating the power of integrating energetics with swimming behavior and dive characteristics to assessing the impact of anthropogenic disturbances on cetaceans. While the oxygen stores and behavioral response will differ across species, this information will allow researchers to better predict the potential physiological consequences.

Works cited

DeRuiter, S. L., Southall, B. L., Calambokidis, J., Zimmer, W. M., Sadykova, D., Falcone, E. A., Friedlaender, A. S., Joseph, J. E., Moretti, D., Schorr, G.S. et al. (2013). First direct measurements of behavioural responses by Cuvier’s beaked whales to mid-frequency active sonar. Biol. Lett. 9, 20130223.

Todd, S., Lien, J., Marques, F., Stevick, P. and Ketten, D. (1996). Behavioral effects of exposure to underwater explosions in humpback whales (Megaptera novaeangliae). Can. J. Zool. 74, 1661-1672.

 Williams, T. M., Kendall, T. L., Richter, B. P., Ribeiro-French, C. R., John, J. S., Odell, K. L., … & Stamper, M. A. (2017). Swimming and diving energetics in dolphins: a stroke-by-stroke analysis for predicting the cost of flight responses in wild odontocetes. Journal of Experimental Biology220(6), 1135-1145.

Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography

By Grant Voirol, SRC intern

On March 11, 2011, the Tohoku coast of Honshu, Japan was struck by a tsunami reaching heights of 125 feet. The tsunami caused widespread destruction along the coast, casting boats, docks, and other objects into the western Pacific Ocean. Many of these items were homes for marine communities or were soon colonized, turning these floating debris into life support rafts traveling across the Pacific. Circulating through the ocean, these rafts eventually began to make landfall on the western coast of North America and Hawaii (Figure 1). In the five years following the arrival of the first transoceanic rafts in 2012, scientists conducted a massive scale collection of biodiversity levels supported by each of piece of debris found along the coasts of Alaska, British Columbia, Washington, Oregon, California, and Hawaii.

[Figure 1.] Major ocean currents in Northern Pacific Ocean showing the path of that marine debris took following the 2011 tsunami.
(Source: Carlton et al. 2017)

In order to sample the widest range possible, a large-scale coordination took place between the scientists conducting the study and local, state, and federal officials, as well as volunteer beach clean up groups to collect and photograph samples. In total, 634 pieces of Japanese debris were assessed for animal diversity. Scientists found 289 different species of animals on the debris, mostly consisting of invertebrates such as mollusks, crustaceans, worms, and other fouling organisms.  Researchers even found fish native to coastal Japan living in the innards of fishing vessels (Figure 2). Fishing vessels and other larger debris such as docks were able to support much more diverse communities of organisms, while smaller debris such as crates or beams might only support few or one species. Additionally, multiple generations of the same species were found, indicating that these transoceanic rafts are suitable for reproduction to take place.

[Figure 2.] Examples of organisms found by researchers. (A) Dock found with high species richness, (B) Fishing vessel fouled with barnacles, (C) Japanese barred knifejaw fish found in a large fishing vessel, (D) wood beam bored by shipworms, (E) buoy with a single limpet, (F) buoy covered by bryozoans.
(Source: Carlton et al. 2017)

What this study shows is that man-made marine debris is a highly effective way to introduce nonnative species to coastal environments. While still present, very few rafts were composed mainly of natural materials such as wood. Mainly these rafts were consisted of metal, plastics, and fiberglass. These materials can survive for much longer periods in the ocean and therefore represent new ways for species to spread their geographic range. Additionally, the way that transoceanic rafts work increases their chances of spreading organisms from far off ecosystems. Firstly, they move slowly which lets the organisms that are along for the ride acclimatize to their new environment. Secondly, rafts can support large networks of reproducing organisms as opposed to planktonic juvenile organisms that need to grow to reproductive size. Finally, these rafts have an incredibly large geographic range, being able to make landfall at any point along the coast. Previous dispersal methods such as transport by ballast water confine nonnative organisms to harbors. What this means is that as we increase our use of non-biodegradable materials in coastal cities that can be swept away be storm, we are increasing the chances of species dispersal with consequences that we cannot fully predict.


Carlton, J.T., Chapman, J.W., Geller, J.B., Miller, J.A., Carlton, D.A., McCuller, M.I., Treneman, N.C., Steves, B.P., Ruiz, G.M. “Tsunami-Driven Rafting: Transoceanic Species Dispersal and Implications for Marine Biogeography.” Science 357.6358 (2017): 1402–1406.

Declining oxygen in the global ocean and coastal waters: A summary

By Abby Tinari, SRC intern

Oxygen is not only important for life on Earth, but it also regulates major nutrient and carbon cycles globally. All the past major extinction events have been associated with oxygen-deficient oceans and warm climates. Over the last 50 years, the anoxic (no oxygen) volume of the ocean has quadrupled, and hypoxic (low oxygen) zones have increased by the size of the European Union (Figure 1). In the summary below, Breitburg et al 2018 describe the causes (Global warming and nutrient enrichment), good and bad effects and responses (effects of ocean deoxygenation & biological responses and Biogeochemistry), current predictions and models (predicting oxygen decline), and some solutions that are available (reducing deoxygenation and its negative effects).

Figure 1 Breitburg et al 2018

 Global warming

Warming waters reduce oxygens ability to dissolve into water. This decrease in solubility contributes ~15% of the total oxygen loss. Metabolic rates also influence the total oxygen loss. Higher metabolic rates, which are caused by warmer temperatures, require organisms to consume more oxygen, leading to higher CO2 production, and more acidic waters. More acidic waters harms and decreases organism’s ability to efficiently use dissolved oxygen. The other 85% of total oxygen loss comes from the reduction of ventilation, the transport of oxygen into the interior of the ocean, and the supply of nutrients that control organic matter production. The low oxygen predicted with global warming may have a human benefit for a time, winds are expected to be strengthened and in turn increase upwelling along coasts. The increase in upwelling may see an increase in commercially popular marine organisms. But upwelling brings hypoxic water to the surface, adding to the deoxygenation problem. Just like in the open ocean, water stratification and a decrease oxygen solubility are expected to increase in coastal waters but at a faster rate.

Nutrient enrichment of coastal waters

Nutrient loads entering coastal waters have increased by 43% from 1970 to 2000 with the increase in human population and agricultural production. The excess nutrients (Nitrogen and Phosphorus) cause eutrophication. Eutrophication encourages algae growth and ultimately causes a decrease in oxygen through excess decomposition (which consumes oxygen). Low vertical exchange and long retention times further exacerbate the hypoxic conditions in coastal waters.

Effects of ocean deoxygenation & biological responses

Effects of low oxygen will occur in organisms in a variety of ways, as they have a wide range of oxygen tolerances. Life processes in aerobic organisms from genes to entire ecosystems depend on oxygen. Different exposures to low oxygen levels can reduce survival and slow growth, impair reproduction, induce genetic changes in future generations, and alter immune responses. Organisms that depend on oxygen gradients to migrate may be constrained, effecting not only those organisms, but also their predators. Alternatively, organisms that can tolerate hypoxic waters may better avoid predators and expand their ranges. Mobile organisms, such as fish and invertebrates are expected to shift poleward and to deeper waters with ocean warming.

Figure 2 Breitburg et al 2018


Since many nutrient-cycling processes are dependent on oxygen, small changes in local low oxygen areas can influence productivity, nutrient (N, P, Fe and many others) budgets and trace metal distributions on global scales. Many of the by-products of low oxygen levels are toxic or greenhouse gases, i.e. hydrogen sulfide, nitrous oxide, cyanobacterial blooms etc.

Predicting oxygen decline

Reliable numerical models to predict different scenarios on the effects of climate change and eutrophication in waters around the world are the basis of marine ecosystem management. The models agree on the amount of oxygen lost by the end of the century (a few percent) which could have substantial effects on abiotic and biotic systems. But where the low oxygen zones will be located is under debate, limiting our ability to predict and create management plans for these areas. These complicated models need to predict a multitude of factors from human population growth rates to the timing and intensity of precipitation and warming and 3-D water movement and quality models to the effects of education and income on sanitation and animal protein use. All aspects of life need to be integrated into the models to predict the effects.

Figure 3 Breitburg et al 2018

Reducing deoxygenation and its negative effects

Efforts need to be made on local, national, and global scales to limit declines, restore, and support the resilience of ecosystems that have dealt with unusual levels of oxygen. Many of the solutions to deoxygenation can substantially benefit society, i.e. improved sanitation can reduce nutrient loads in waters and help increase human health.  Some of the solutions will take time, i.e. oxygen demand from sediment can take decades to decrease, but other methods such as nutrient reduction in the Chesapeake Bay have already produced results not seen since 1984. To create an ecologically and economically effective plan, a combination of methods must be used and stakeholders from all parts of society (scientist, government, industry and the public) must be involved.

Works Cited

Breitburg, D., L. A. Levin, A. Oschlies, M. Grégoire, F. P. Chavez, D. J. Conley, V. Garçon, D. Gilbert, D. Gutiérrez and K. Isensee (2018). “Declining oxygen in the global ocean and coastal waters.” Science 359(6371): eaam7240.

Expanding fisheries management and marine conservation across borders

By Mitchell Rider, SRC master’s student

In 2006, the U.S. Congress reformed the Magnuson-Stevens Fishery Conservation and Management Act (MSA) – an act that directs marine fisheries management – by amending the High Seas Driftnet Fishing Moratorium Protection Act. This new amendment directed Secretary of Commerce to recognize foreign nations identified as participating in the bycatch of protected living marine resources (PLMRs) by including them in a biennial report presented to Congress. The responsibility of identifying participating foreign nations was delegated to NOAA Fisheries. The procedure for identification was delineated as follows: Once participation in bycatch is confirmed, NOAA must consult with the participating nation to inform them about the MRA, define the requirements of meeting positive certification, offer help in meeting that certification, and outline the consequences of receiving negative certification. Positive certification is met when a management plan to regulate bycatch is implemented and yields results comparable to that of the U.S. Negative certification is received when the participating nation fails to do so, and this is met with U.S. sanctions.

Image of a loggerhead turtle escaping a net equipped with a turtle excluder device (TED). [By NOAA –, Public Domain,]

Mexico was the first nation to be recognized for PLMR bycatch and was recognized specifically for the bycatch of an internationally shared PLMR, the North Pacific loggerhead turtle in 2013. In their paper, Senko et al. (2017) illustrates the effects of identifying Mexico for bycatch of the North Pacific loggerhead turtle and potential recommendations for improving management and its implementation.

Loggerheads nest along the coast of Japan, but perform developmental migrations taking them into the North Pacific basin where a proportion of the population recruits into the Gulf of Ulloa along the Pacific coast of Baja California Sur. It is in this location off the coast of Mexico loggerheads are subjected to high rates of bycatch by bottom-set nets targeting commercially important species like halibut. Mexico was identified after the concurrent discovery of >1,000 beached loggerhead carcasses and 88 loggerheads captured in bottom-set nets.

Upon identification, Mexico initially denied the bycatch of loggerheads even though they had agreed to reduce bycatch rates. At this point, the Mexican government disregarded its collaboration with the U.S. to test turtle friendly fishing gear, and instead proposed a plan to establish a protected area for the loggerhead within the Gulf of Ulloa. In response, the U.S. decided, as a compromise, to grant Mexico more time to establish this protected area. Instead, Mexico utilized this time to establish a partial fishing reserve. Since Mexico did not comply with U.S. regulation standards, the U.S. gave Mexico a negative certification. Almost a year later, Mexico established new loggerhead bycatch control measures, which ultimately lead the U.S. to grant a positive certification.

A map of Mexico where the Baja California Sur (BCS) is shaded in with green.[CC BY-SA 3.0,]

From this case, Senko et al. proposed policy recommendations to improve the processes of identification and consultation of the new amendment. Because of the Gulf of Ulloa closure and the trade sanctions, thousands of fishermen did not receive an income for one summer. Therefore, the U.S. should consider the potential socioeconomic and political effects that result from these threatened trade sanctions. In addition, there should be a universal form of reporting bycatch data from each country so fewer countries that do report their data are not as dissected as ones that do not do this. Finally, the authors suggested NOAA Fisheries be provided with more resources to create better collaborative relationship with the identified nation. In this case, a better relationship with Mexico may have prevented them from denying allegations initially, thus delaying the process of management implication. If these recommendations are implemented into the identification and consultations processes, the U.S. could avoid creating socioeconomic and political hardships.

Works cited

Senko, J., L. D. Jenkins, and S. H. Peckham. 2017. At loggerheads over international bycatch: Initial effects of a unilaterally imposed bycatch reduction policy. Marine Policy 76:200-209.

Adaptation or Extinction: the Necessity of Fish Reproductive Acclimation in the Face of Climate Change

By Trish Albano, SRC intern

In an ever-changing marine environment, organisms must respond to their surroundings in order to remain reproductively successful.  However, with the current rate of climate change predicted to raise sea surface temperatures by approximately 3°C by the year 2100 (Collins et al., 2013), species are faced with a choice: shift geographic range or gradually adapt to changes cross-generationally.  In fishes, reproductive regulation and temperature are innately intertwined.  Changes in environmental temperature have the ability to impact the hypothalamo-pituitary-gonadal (HPG) axis in the reproductive system of many species of fish.  This gland controls the regulation of reproductive hormones necessary for reproductive success following a temperature cue.  In a study at James Cook University in Australia, researchers aimed to evaluate if there was a difference in gene expression in adult spiny chromis damselfish (A. polyacanthus) (Image 1) that had different reproductive capabilities as a result of developmental and transgenerational exposure to increased temperature (Veilleux, Donelson, & Munday, 2018).

Image 1. Study species: spiny chromis damselfish (A. Polyanthus). Species of damselfish from the West Pacific (Source: Wikimedia Commons)

Overall, this study’s goal was to assess the potential for reproductive plasticity in the face of increased temperatures. In order to assess if damselfish had partially acclimated reproductive capability, the researchers evaluated gene expression in the fish using a step-wise transgenerational temperature treatment (Donelson et al., 2016) (Figure 1).  It was hypothesized that the expression of reproductive genes would be down-regulated in damselfish who were exposed to the same high temperature levels as their parents.  However, it was also hypothesized that the expression of genes in the step-wise temperature treatment (parents exposed to +1.5°C, offspring exposed to +3.0°C) would be similar to that of the control group (no temperature increase) due to partial acclimation of the reproductive system in response to elevated temperature.

Figure 1. Experimental design of the study showing the control group (no transgenerational temperature increase), developmental (+3.0 degrees C in offspring), step-wise (+1.5 degrees C in parent, + 3.0 degrees C in offspring) and transgenerational (+3.0 degrees C in parent and offspring). Duration of the experiment is shown in the gray bars on the left. (Source: Veilleux, Donelson, & Munday, 2018).

After completing the experiment, it was found that the step-wise treatment group had a comparable proportion of pairs that reproduced to the control group.  On the other hand, pairs that were exposed to an immediate +3.0°C temperature increase (transgenerational and developmental) had fewer and no pairs reproducing successfully.  The results of this experiment support the researcher’s hypothesis that partial reproductive acclimation to elevated temperatures would lead to more reproductive success.  If climate change trends continue to result in increasing environmental temperature, maintaining reproductive success is key to marine species taking the adaptation approach versus changing geographic range.

Works cited 

Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, et al. (2013) Long-term climate change: projections, commitments and irreversibility. In Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom and New York.


Donelson JM, Wong M, Booth DJ, Munday PL (2016) Transgenerational plasticity of reproduction depends on rate of warming across gen- erations. Evol Appl 9: 1072–1081.

Veilleux HD, Donelson JM, Munday PL (2018) Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations. Conserv Physiol 6(1): cox077; doi:10.1093/conphys/cox077.