Posts

Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems

By Jake Jerome, RJD Graduate Student

It has been shown that global seafood trade inherently drives seafood production, negatively impacting marine ecosystems worldwide. While it is well known that these ecosystems are deteriorating, most research has been focused on global stock assessments, catch trends, or fisheries dynamics, with little attention given to researching the ways in which global trends are linked to consumers through trade. Fish prices can potentially be used as a feedback signal to consumers about the state of fisheries and marine ecosystems, but this method faces several issues. Crona et al 2015 dive deeper into the usefulness of using fish prices as a feedback signal, but develop a set of mechanisms that combine to weaken this signal from global trade to consumers.

The first mechanism that weakens price signals is masking. Masking occurs within individual fisheries and consists of two parts. First, negative impacts that arise from fishing are often separated from the operating cost of the fishery. For example, fisheries may cause habitat destruction or result in bycatch of endangered animals, but neither of these have a large impact on the yield or cost. Second, short-term catch trends may not provide accurate representation of target stock declines due to factors such as increased effort, technological advances, and fishing deeper or farther from shore.

Image1_Fishery

Shrimp trawl net with bycatch (Elliott Norse, Marine Conservation Institute/Marine Photobank)

The second mechanism discussed is dilution. Dilution occurs when the amount of supply that an individual fishery has declines but is hidden from consumers by using the supply from another resource area. For example, the UK imports Atlantic cod from Iceland and Faeroes to make up for the decline of North Sea cod. Through dilution, changes in any one ecosystem are concealed from consumers because substitutable products are made available from different ecosystems.

A third mechanism examined is the ‘drowning out’ of price signals. This is usually due to other market factors that affect fish prices. Things like changes in consumer spending patterns or price/availability of alternative protein sources can combine to alter fish prices that do not necessarily connect with ecosystem or species decline.

Chilean Seabass for sale at Whole Foods (Gerick Bergsma 2011/Marine Photobank)

Chilean Seabass for sale at Whole Foods (Gerick Bergsma 2011/Marine Photobank)

In conclusion, the authors suggest that the feedback from individual fisheries to consumers worldwide is highly asymmetric and that price signals reflecting changes in the source ecosystem typically are masked, diluted, or drowned out unless large proportions of seafood stocks collapse. Despite this, opportunities do exist that possibly could help provide a positive feedback signal to consumers, resulting in promoting sustainable seafood practices.

Source: Crona, B. I., Daw, T. M., Swartz, W., Norström, A. V., Nyström, M., Thyresson, M., Folke, C., Hentati-Sundberg, J., Österblom, H., Deutsch, L. and Troell, M. (2015), Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. Fish and Fisheries. doi: 10.1111/faf.12109

Evolution of Motherhood: The Importance of Mature Female Fish

By Daniela Ferraro, RJD Intern

Older, female fish are becoming a necessity for the continuation of trophy-fish hunting and sustainable commercial fishing. Looking at both freshwater and saltwater species, the presence of larger, more mature fish increases the productivity and stability of fish populations. Dr. Mark Hixon, of the University of Hawai’i at Manoa, refers to the loss of big fish as “size and age truncation.” Big, old, fat, fertile, female fish, affectionately nicknamed BOFFFFs, have proved the ability to produce significantly more eggs than younger fish. They also can spawn at different times and places, allowing them the option of evading potential predators and threats to their offspring. Efforts to protect older, larger fish include creation of marine reserves, which act as no-take zones. Marine reserves allow fish to spawn throughout their entire lives. As large fish, BOFFFFs are a valuable commodity in commercial fishing, as fisheries tend to target marketable commodities. This specified targeting alters a fishery’s modes and methods: through the narrowing of mesh size or gear type. Drift nets and long lines are used in the removal of larger fish from certain populations. To some extent, even bait type and hook affects the type of fish caught. Slot limits are placed on commercial fisheries, limiting them to catching only medium-sized fish. Although egg size variation among a single species may be narrow, across a diverse range, significant maternal effects have been noted in terms of larger egg size.

BOFFFFs: Big (1.1m), old (ca.100 years), fat (27.2 kg), fertile female fish: Shortraker rockfish (Sebastes borealis). Image Source: Karna McKinney, Alaska Fisheries Science Center, NOAA Fisheries Service

BOFFFFs: Big (1.1m), old (ca.100 years), fat (27.2 kg), fertile female fish: Shortraker rockfish (Sebastes borealis). Image Source: Karna McKinney, Alaska Fisheries Science Center, NOAA Fisheries Service

More mature females produce more, and often larger, eggs that typically develop into larvae that can withstand more intense challenges like starvation and have a faster growth rate. This is partly due to the physical body size, as a larger fish translates to a wider body cavity to allow for the development of larger ovaries. BOFFFFs have a tendency towards earlier and longer spawning seasons. With this flexibility, these fish can withhold spawning in unfavorable conditions. Once the danger of predation, or other threats, has passed, BOFFFFs can spawn abundantly and improve recruitment. Hixon refers to this phenomenon as the storage effect. This ability is preferential when considering commercial and differential fishing. The targeted removal of BOFFFFs results in a truncation of size and age structure of a specific population. The removal of older fish from an overfished population will increase their probability of species collapse. The assumption that younger female fish contribute equally to production and stock is detrimental to the future of sustainable fishery stocks.

Fishery productivity would find stability in the implementation of old-growth age structures. Berkeley suggested three methods to limit the overfishing of BOFFFFs: slot size limits with both minimums and maximums, low rates of fishing mortality, and marine reserves.  This can be accomplished with enforcement of both marine reserve no-take zones as well as catch limits. Marine reserves act not only as a direct safe place for fish to thrive and procreate, but also as a healthy influence on surrounding waters. They give maturing fish an area to develop, spawn and seed nearby fisheries.

Cape Rodney-Okakari Point, Goat Island Marine Reserve, New Zealand. Image Source: Wikimedia Commons

Cape Rodney-Okakari Point, Goat Island Marine Reserve, New Zealand. Image Source: Wikimedia Commons

Marine reserves act to provide ecosystems and environments for fish to not only reach sexual maturity, but past that. In addition, larvae from healthy marine reserves are found to seed the areas directly adjacent. This will assist in the replenishment of overfished and exploited populations. By integrating large-scale marine reserves, it is believed that it is possible to halt and reverse the decline of global fisheries while also protecting marine teleost, mammal, and invertebrate species. The decrease in mortality due to the protection of species by marine reserves and the subsequent increase in productivity has been seen in both temperate and tropical locations. Since marine reserves are located along reefs, estuaries, and kelp beds, it provides a large range in the protection of a diversity of species.

In a study conducted by Steven Berkeley et al, featuring 20 female black rockfish (Sebastes melanops), from five to seventeen years, it was found that larval groups from the older females grew three times faster than their counterparts. Larvae from the older fish also survived starvation twice as long. According to Berkeley, this is due to the provision of larvae with energy-rich triaglycerol (TAG) lipids as they increase in age. The TAG volume found in oil globules is positively correlated with age, growth rate, and survival. However, maternal effects can’t be classified as consistent across every species of teleost fish. Instead, research indicates that maternal effects have developed across a diverse taxonomic range. With the removal of matured female fish, populations are more likely to develop damaging consequences in terms of biodiversity and productivity.

 

References

Berkeley, Steven A., Mark A. Hixon, Ralph J. Larson, and Milton S. Love. “Fisheries Sustainability via Protection of Age Structure and Spatial Distribution of Fish Populations.” Fisheries 85.5: 23-32. Print.

Gell, Fiona R., and Callum M. Roberts. “Benefits beyond Boundaries: The Fishery Effects of Marine Reserves.” Trends in Ecology & Evolution 18.9: 448-55. Print.

Hixon, M. A., Johnson, D.W., and Sogard, S. M. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. – ICES Journal of Marine Science, 71: 2171–2185.

Towards more efficient longline fisheries: fish feeding behavior, bait characteristics and development.

By Sarah Hirth, RJD Intern

There has been a growing demand for bait resources seeing that standard bait types, such as squid, herring and mackerel are also used for human consumption. As a result, bait prices have increased, thus increasing the demand for an alternative bait, one that is not based on resources used for human consumption. This study highlights factors that need to be taken into consideration when looking for alternative bait, and explores attempts of alternative baits that have been made.

Løkkeborg at al. agree that an alternative bait should be “effective, species- and size-selective, practical for storage and baiting, and based on low-cost surplus products.” An alternative bait that would meet all of these characteristics would also make the procedure of longline fishing more environmentally friendly.

Although there have been several attempts to develop alternative baits, these have had limited success (e.g. Bjordal and Løkkeborg 1996; Januma et al. 2003; Polet al. 2008; Henriksen 2009). There have been two main methods, which have been used to create the alternative bait. These are natural resources, such as surplus products from the fishing industry and synthetic ingredients as attractants. Mentioned types of alternative bait are: Norbait, artificial bait invented by William E.S. Carr, bait bags, and arom bait.

Table 1

When these baits were tested, they all resulted in some positive factors. However, they still had undesirable outcomes. For example Norbait, which is based on surplus products, where minced fish products are mixed with alginate (a gelling agent, used as the binder) and extruded into a fiber mesh tube, has resulted in species –selective effects. In fishing trials Norbait has resulted in increased catch rates of two to three hundred per cent for haddock, yet Norbait compared poorly to natural bait for cod. “Compared to natural bait, minced herring enclosed in a nylon bag resulted in a 58% higher catch rates for haddock, a non-significant catch increase for tusk and ling, and a considerably lower catch rate for cod.” Similar results were observed with the other types of alternative baits.

The efficiency of longline baits depends on several factors, which are important to take into consideration when finding alternative baits. Some factors include: bait size, texture, and taste. An alternative bait also needs to be based on an odor source, and attractants need to be released over a considerable period of time. Løkkeborg et al. state that “the knowledge of food search behavior in fish is the basis of bait development efforts.” The list of factors affecting feeding behavior in this review includes: temperature, feeding motivation and hunger state, diel, tidal and annual rhythms, light levels, seasonal change in photoperiod, and water currents.

Figure 1

Although there currently are no alternative baits used in longline fishing, Løkkeborg et al. hope that improved knowledge of how fish respond to baited gear will aid future research aimed at the development of alternative baits. As the demand for marine resources for human consumption continues to increase, costs for longline bait are also likely to keep increasing. “The development of alternative baits used on resources not used for human consumption may therefore prove to be critical to a viable longline fisheries.”

Løkkeborg, S., et al. (2014). “Towards more efficient longline fisheries: fish feeding behaviour, bait characteristics and development of alternative baits.” Reviews in Fish Biology and Fisheries 24(4): 985-1003.

Global population growth, wild fish stocks, and the future of aquaculture

By: Hannah Calich, RJD Graduate Student

For many years we lived in a world where the state of our fish stocks was not a primary concern. However, our population has become so large, and our technology so advanced, that we are utilizing resources at a rate that was once inconceivable. We have significantly impacted many of the world’s fish stocks and it is no longer biologically or economically feasible to continue harvesting them at this rate. Thus, we must develop ways to relieve pressure on wild fish stocks while continuing to provide the world with the fish protein it requires. Given the projected human population, and the current status of wild fish stocks, it will be up to the aquaculture industry to help the ocean meet the world’s demand for fish protein.

The global human population has been projected to reach over 9 billion people by 2050, and over 10 billion people by 2100 (Figure 1; UN, 2012). While the rate of population growth has been slowing, and may eventually reach a plateau, feeding a population of 9 to 10 billion people represents a significant challenge.

calich 1

Projected world population based on a medium population growth variant (data from UN, 2012)

Along with the world’s population, meat consumption has been steadily rising. In the 1950s the world’s population was consuming 44 million tonnes annually; by 2009 that figure had increased to 272 million tonnes. When the increase in human population is taken into consideration those figures suggest that the annual per capita meat consumption rate has more than doubled, to almost 90 pounds per person (Brown, 2011).

While on average the world’s meat consumption has been rising, there are regional trends in who can afford to eat meat. As Brown (2011) said, “wherever incomes rise, so does meat consumption” (pg. 173). As a result of incomplete or insufficient diets, currently 800 million people suffer from chronic malnourishment worldwide (FAO, 2014).

Fish are an important source of protein, nutrients and energy, particularly in poorer nations where essential nutrients are often scarce (FAO, 2014). For example, 150 g of fish protein can provide 50-60% of an adult’s daily protein requirement (FAO, 2014). In addition to being nutritious, fish are often an affordable source of protein. As such, nearly 17% of the global population’s protein intake comes from fish, though again the trends are regional and that number is closer to 50% for some developing countries in Africa and Asia (FAO, 2014). Following the trend of the world’s meat consumption, per capita fish consumption as also increased, from 10 kg in the 1960s to over 19 kg in 2012 (FAO, 2014). Per capita fish consumption has increased in both developing regions (5.2 kg in 1962 to 17.8 kg in 2010) and low-income food-deficit areas (4.9 kg to 10.9 kg) (FAO, 2014). While developed nations still consume more fish, the gap is narrowing.

 The surge in fish consumption has left the marine capture industry struggling to meet the world’s demand for fish protein. Global marine capture fisheries have been consistently harvesting between 80 and 90 million tonnes per year since the mid-1980s (Figure 2; FAO, 2014; Pauly & Froese, 2012). However, this stability is not due to stable fish populations. Instead, the stability is due to pushing the boundaries of the ocean’s fish stocks. Specifically, the marine capture industry has been targeting less desirable species, fishing further offshore, and harvesting smaller fish than ever before.

calich 2

Aquaculture and capture fisheries production in millions of tonnes from 1950-2012 (Source: FAO, 2014)

This high demand for fish protein has put a significant strain on wild fish populations. Currently, approximately 30% of wild stocks are considered overfished, 60% are fished at (or close to) their maximum sustainable limit, and only 10% are being fished under their limit (FAO, 2014). Overfishing not only negatively impacts the ecosystem, but also reduces fish production and has negative social and economic consequences. For example, in areas of poor governance fishers that are unable to legally catch their quotas occasionally turn to illegal, unregulated or unreported fishing techniques to earn a living. These practices can be wasteful, dangerous and negatively impact communities and the environment (FAO, 2014). Simply put, the world’s oceans cannot continue to support the planet’s increasing demand for fish.

Aquaculture has the potential to be the solution to the world’s fish shortage. Global aquaculture production is one of the fastest growing food-producing sectors. In 2012 aquaculture provided almost 50% of all fish for human consumption and has been predicted to provide 62% by 2030 (Figure 2; FAO, 2014). Not only are we raising more fish, but we are also eating more of the fish we raise. The amount of fisheries production used by humans for food has increased from about 70% in the 1980s to move than 85% (136 million tonnes) in 2012 (FAO, 2014). In fact, in 2012 aquaculture production was higher than beef production (66 million tonnes compared to 63 million tonnes) (Larsen & Roney, 2013). This increase in productivity is largely due to an increase in small-scale fish farms (FAO, 2014).

In addition to helping feed the world, aquaculture can play a critical role in the economy. Together, the fisheries and aquaculture industries help support the livelihoods of 10-12% of the world’s population (FAO, 2014). Additionally, fish is one the most commonly traded commodities worldwide and was worth almost 130 billion dollars in 2012; a value that has been predicted to increase into the future. The fish trade is particularly important in developing nations where in some cases the trade is worth over half of the total value of traded commodities. Aquaculture also benefits to the economy because of how efficiently herbivorous fish convert feed into live weight. For comparison, the grain to live weight ratio of cattle is approximately 7:1, it is 4:1 for pork, 2:1 for chicken and less than 2:1 for herbivorous fish such as tilapia or catfish (Brown, 2006). Since herbivorous fish have such a low ratio, focusing on them will allow us to harvest more protein while using less grain.

Aquaculture, in addition to directly providing food, can also serve as a way to support and replenish natural fish stocks. For example, in 2011 the Mississippi Department of Natural Resources raised and released 7,500 cobia in the northern Gulf of Mexico. The project’s aim was to help replenish stocks and to examine the feasibility of releasing fish that were raised in aquaculture facilities into the wild as part of a stock enhancement program (Mississippi Department of Natural Resources, 2011).

While aquaculture has shown great promise, like any industry it has it’s flaws. Two of the primary environmental concerns with aquaculture are preventing ecosystem degradation, and raising carnivorous fish without harming prey populations. Ecosystem degradation comes in many forms but can include: habitat destruction, disease, pollution, and changes to a species’ population genetics. Raising carnivorous fish, such as salmon or tuna, is controversial because while they are economically important species, their growth depends on the availability of large quantities of small prey fish, such as pilchards. Harvesting large quantities of wild prey fish for fish meal can seriously impact the prey’s natural populations (Brown, 2006). To continue to grow sustainably the aquaculture industry needs to reduce its environmental impact as well as become less dependent on wild fish for feed, and increase the diversity of culture species.

While there are important sustainability concerns surrounding the aquaculture industry, the industry is progressing and adapting at a very fast rate and fortunately, these concerns are becoming less relevant. Since the world’s population is only predicted to increase, finding a way to meet the world’s demand for fish without relying on wild stocks is essential. So long as the aquaculture industry continues to develop in a way that is environmentally sustainable, aquaculture will have an important role to play in providing healthy fish protein and jobs for the world’s economy.

 

References:

Brown, L. R. (2006). Plan B 2.0: Rescuing a Planet Under Stress and a Civilization in Trouble. Washington, DC: Earth Policy Institute. Retrieved September 4, 2014 from http://www.earth-policy.org/books/pb2

Brown, L. R. (2011). World on The Edge. Washington, DC: Earth Policy Institute. Retrieved September 4, 2014 from http://www.earth-policy.org/images/uploads/

book_files/wotebook.pdf

FAO. (2014). The State of World Fisheries and Aquaculture 2014. Retrieved September 4, 2014 from http://www.fao.org/3/a-i3720e.pdf

Larsen, J., & Roney, M. (2013). Farmed Fish Production Overtakes Beef. Retrieved September 4, 2014 from http://www.earth-policy.org/plan_b_updates/2013/ update114

Pauly, D., & Froese, R. (2012). Comments on FAO’s State of Fisheries and Aquaculture, or ‘SOFIA 2010’. Marine Policy, 36(3), 746-752.

Mississippi Department of Marine Resources. (2011). Cobia Released on Popular Mississippi Offshore Artificial Reef. Retrieved September 4, 2014 from http://www.dmr.state.ms.us/index.php/news-a-events/recent-news/272-11-131-lst

UN. (2012). World Population Prospects: The 2012 Revision. Retrieved September 4, 2014 from http://esa.un.org/unpd/wpp/unpp/panel_population.htm

 

 

Economic vs. Conservation: Trade-offs between Catch, Bycatch, and Landed Value in the American Samoa Longline Fishery

By Laurel Zaima, RJD Undergraduate Intern

Commercial fisheries have prioritized maximum economic profit over the ecological distresses caused by their fishing practices. Consequently, unsustainable fishing practices hook high amounts of bycatch in relation to the amount of the target species. Bycatch are the animals that are accidentally caught and discarded due to lack of value, insufficient size, damaged, or regulatory reasons. Bycatch has detrimental effects on the populations of a diversity of marine species; therefore, has altered ecological relationships and the economics of commercial fisheries. A seemingly obvious solution to this threat would be the implementation of commercial fishing gear that mitigates bycatch. However, this resolution results in trade-offs among the catch, bycatch, and landed value. In their scientific research paper, Trade-offs among Catch, Bycatch, and Landed Value in the American Samoa Longline Fishery, Watson and Bigelow (2013) assess the benefits and disadvantages of modifying longlines to reduce bycatch in the American Samoa longline.

Longline fisheries often modify their fishing gear to the behavior characteristics of their target species in order to have the most catch per unit effort.  Shallow hooks (<100 m) would be set to target yellowfin tuna and billfish, where as, deep hooks (>100 m) will be set to target albacore and bigeye tuna. The U.S. longline fishery based in American Samoa target a majority of their valued species in deep water, such as albacore. Unfortunately, their current fishing practices are not modeled after the behavior of their target species and have led them to catch tons of bycatch. Non-targeted species, such as green sea turtles, silky sharks, and oceanic whitetip sharks spend majority of their life near the surface, and are susceptible to longlines set in shallow waters (<100 m) or hooks passing through the surface during the setting or retrieval of hooks. The elimination of shallow water hooks or the redistribution of shallow hooks to deeper depths could help reduce bycatch and increase the landing of target species.

Watson and Bigelow (2013) modified the American Samoa fishery’s longline fishing gear by removing the shallowest hooks per section of the longline or by hypothetically redistributing the shallowest hooks to a deep position. In the first three scenarios, Watson and Bigelow (2013) eliminated the first hooks, the first and second hooks, and the first, second, and third hooks at both ends of each section.  In the other three scenarios, the hooks were theoretically rearranged into deeper depths by extending the number of sections.

Picture 1

A Longline section has about 23-36 hooks between two floats, and each longline has up to ~100 sections. In Watson and Bigelow’s (2013) study, they modified the longline by either eliminating the shallowest hooks or by hypothetically reallocating them into deeper positions.

They found that there is a decrease in all catch, including a significant decrease in bycatch, by eliminating shallow hooks from longline sections. By reallocating the shallow hooks to deeper positions, there was an effective bycatch reduction while still sustaining target species landings. In terms of economic profit, it would be most beneficial for longline fisheries to redistribute their hooks to deeper positions because it increases their chances of catching the most valuable species. Specifically, there was an increase in catch of the three most valuable species in the American Samoa fishery, albacore, yellowfin, and bigeye tunas, with the redistribution of hooks. The increased catch of these 3 species alone would increase the total annual landed value by an estimated U.S. 1.4 million dollars.

In terms of conservation benefits, the removal of the first three shallow water hooks reduces bycatch for a variety of species, including 25 species of fish, sea turtles, billfishes, and some shark species. Although there are ecological advantages to the elimination or redistribution of the shallow water hooks, there are some economic trade-offs. In the scenarios of elimination and redistribution, there is a loss in landed value for wahoo, billfishes, and dolphinfish. However, the catch of tuna would probably compensate for the loss value of these species. There is also a possibility of an unintentional trophic cascade with decreased catches of billfish (tuna predators) because it could increase the predation on a fishery targeted tuna species. Another potential trade-off would be the increased bycatch of deeper dwelling vulnerable species, such as shortfin mako sharks and the bigeye thresher sharks.

Picture 2

A thresher shark is caught on a longline as bycatch.

Watson and Bigelow’s (2013) modifications to the hook distribution on longlines should be considered for implementation by longline fisheries that target deeper residing species. Depending on the location of the fishery, these longlines could have varying economic and ecological results. Nonetheless, adjusting the longline hooks to specifically target a species is the most feasbile way to reduce bycatch while sustaining target species catches.

Real-Time Spatial Management as a Bycatch Mitigation Measure

By Hannah Calich, RJD Graduate Student

Bycatch, or the unintentional capture of non-target species, has negative biological, economical and social consequences (figure 1). Reducing bycatch has been a fisheries management priority in the US for many years and is increasingly becoming a priority in European fisheries as well. While technical, regulatory and social approaches have all been recognized as ways to reduce bycatch, they are not always effective (Little et al., 2014).

 

9-18-14 1

Bycatch from the Gulf of Mexico shrimp trawl fishery. Photo credit: Elliott Norse, Marine Conservation Institute/Marine Photobank

 

Currently, the primary methods of reducing bycatch involve either creating fishing closures or improving the selectivity of fishing gear. The primary problems with fishing closures are that they can be difficult to enforce and are unresponsive to changes in fish stocks (Little et al., 2014). Increasing the selectivity of fishing gear can create problems when the technology decreases catch of the target species (see figure 2 for an example of a successful gear modification). If the profitability of the fishery is negatively impacted fishers are less inclined to use selective fishing gear (Little et al., 2014). Alternatively, real-time spatial management plans are responsive to changes in stock dynamics and have been proposed as a way for fisheries to reduce their bycatch without impacting the catch of their target species (Little et al., 2014).

 

9-18-14 2

Figure 2. A loggerhead sea turtle escapes from a trawl through a turtle exclusion device. Photo credit: http://www.sefsc.noaa.gov/labs/mississippi/images/loggerhead_ted-noaa.jpg

 

Real-time spatial management plans have been introduced in select European and American fisheries to help encourage vessels to leave areas of high bycatch. Since these plans are relatively new, Little et al., (2014) reviewed ten fisheries across the US and Europe to summarize how real-time spatial management has been successful and where improvements can be made.

While each real-time spatial management plan was tailored for it’s respective fishery, all of the fisheries used their own catch and discard observations to identify areas of high bycatch. Once bycatch levels were identified fishery closures were updated and the news was communicated to the fleet. The time it took fishery closures to be updated varied from hours to weeks depending on the fishery. Real-time spatial management plans benefit fisheries because once areas of high bycatch are identified fishers can avoid them, thus saving time and money. Additionally, there is a positive feedback loop that gives fishers a sense of empowerment and responsibility in managing the natural resources they depend on for their livelihoods (Little et al., 2014).

While real-time spatial management sounds promising, its success depends on the existence of strong leadership and infrastructure (Little et al., 2014). Strong governmental or local leadership is necessary to create and manage fisheries management plans. A strong infrastructure is required to create a real-time communication system that facilitates the collection and monitoring of findings. Additionally, participation, enforcement, and the physical and ecological characteristics of the fishery also influence the success of the plan (Little et al., 2014).

Under the right circumstances real-time spatial management has the potential to greatly assist in mitigating bycatch. However, until the plans are fully developed they should be used in conjunction with other bycatch mitigation measures. Future research is required to determine if using real-time spatial management plans can help mitigate fisheries bycatch over the long term.

 

Reference:

Little, A.S., Needle, C.L., Hilborn, R., Holland, D.S., & Marshall, C.T. (2014). Real-time spatial management approaches to reduce bycatch and discards: experiences from Europe and the United States. Fish and Fisheries. First published online: 18 March 2014. DOI: 10.1111/faf.12080

 

 

 

The Evolution of a Discard Policy in Europe

Hannah Armstrong, RJD Intern

When discussing matters of conserving the ocean and the resources therein, overfishing has continued to be a significant problem.  To compensate, those in charge of fisheries management often implement catch quotas, or ban fishing overall, most often in protected areas.  In Europe, however, where public awareness of ocean conservation has increased, another issue has become the leading topic of discussions in recent years: fisheries discards, and discard policies.

Discards are the portion of a fisherman’s catch that is not kept on board and landed, but instead thrown back into the ocean, usually dead or dying.  In the waters surrounding the European Union, this practice is currently legal, and typically happens as a result of other management measures such as minimum landing sizes, total allowable catches and quota limitations and by-catch restrictions (Borges).  But with European Union fisheries management shifting from focusing on single-species sustainability to maintaining and protecting the entire ecosystem (ecosystem-based fisheries management), understanding the effects of discarding unwanted species is critical (Borges).

discards

Discards are the portion of a fisherman’s catch that is not kept on board and landed, but instead thrown back into the ocean. (Image source: EUReferendum.com)

The European Commission, the “executive body of the European union with the mandate to propose future policies in fisheries management” (Borges), originally began regulating total allowable catches around the year 1980, followed by the first Common Fisheries Policy regulation, which aimed to restrict fishing effort by catch limits, however it never made any reference to discards.  It wasn’t until 1992 that discards were deliberately mentioned in the context of needing improved fishing practices and technology as a means of limiting discards.

By the end of 2004, with a new European Commissioner for Fisheries and Maritime Affairs, discards once again became a heated topic amongst European fisheries managers.  Then, in 2008, when video was released of a UK vessel dumping nearly five tons of commercial sized fish just outside waters where discarding is banned, there was a public outcry for a total ban on fisheries discards (Borges).  A review process for the Common Fisheries Policy began in 2009, which addressed issues such as over-exploitation of fish stocks, strategies and goals for ecosystem-based management, among other things.  Finally, following a 2010 campaign that focused primarily on the issue of discards, the public once again petitioned for more attention regarding this issue, eventually resulting in a discard summit to fully address the problem (Borges).

Looking to the future, there is a plan for the Common Fisheries Policy to include a discard ban for several species, “starting with pelagic species in 2014 and followed by demersal species to be fully implemented by 2016” (Borges).  Still, even with a discard ban, there remain questions as to whether it will prove to be effective fisheries management if it is not monitored and enforced, and if other conservation efforts are not implemented as well.  The evolution of the European Union’s discard policy certainly highlights the impact of public awareness and opinion as a means of informing policy discussion and implementation.

Reference:

Borges, L.  “The evolution of a discard policy in Europe.” Fish and Fisheries (2013)

Conservation research: The cost of rebuilding fisheries

by Laurel Zaima, RJD intern

The depletion of fish stocks is a direct result from human’s impact on the ocean. Overexploitation, pollution, and habitat loss are the driving forces behind this problem. Data indicates that the overall rate of fishing is inclining, the condition of global fisheries is declining, and the socio-economic benefit of fishing is being compromised. The fisheries are receiving extra pressure to increase their catch despite the fisheries and management policies that are being applied by coastal States. The 2002 World Summit on Sustainable Development (WSSD) tried to create a solution for this problem. The WSSD has set a target for fisheries in order to maintain and restore the stocks to a maximum sustainable yield (MSY) by 2015.

A bio-economic model was created with the intentions estimating the ultimate benefits for both the economy and the biodiversity of the ocean. The results indicate that the global fishing capacity needs to be cut by 36-46% from 2008 level. The negative effects of this cut included the loss of employment for 12-15 million fishers and costing the United States $96-358 billion for buy backs. On the other hand, the positive effects includes an increase in the annual fishery production $ 16.5 million tones, annual rent by US $32 billion and improvement of the biodiversity of the marine ecosystem. Unfortunately, the rebuilding of stocks has been delayed because many people are unwilling to accept the short-term socio-economic consequences that occur in order to restore the fish stocks.

Read more