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ABSTRACT How morphology changes with size can
have profound effects on the life history and ecology of
an animal. For apex predators that can impact higher
level ecosystem processes, such changes may have conse-
quences for other species. Tiger sharks (Galeocerdo cuv-
ier) are an apex predator in tropical seas, and, as adults,
are highly migratory. However, little is known about
ontogenetic changes in their body form, especially in rela-
tion to two aspects of shape that influence locomotion
(caudal fin) and feeding (head shape). We captured digi-
tal images of the heads and caudal fins of live tiger
sharks from Southern Florida and the Bahamas ranging
in body size (hence age), and quantified shape of each
using elliptical Fourier analysis. This revealed changes
in the shape of the head and caudal fin of tiger sharks
across ontogeny. Smaller juvenile tiger sharks show an
asymmetrical tail with the dorsal (upper) lobe being sub-
stantially larger than the ventral (lower) lobe, and transi-
tion to more symmetrical tail in larger adults, although
the upper lobe remains relatively larger in adults. The
heads of juvenile tiger sharks are more conical, which
transition to relatively broader heads over ontogeny. We
interpret these changes as a result of two ecological tran-
sitions. First, adult tiger sharks can undertake extensive
migrations and a more symmetrical tail could be more
efficient for swimming longer distances, although we did
not test this possibility. Second, adult tiger sharks
expand their diet to consume larger and more diverse
prey with age (turtles, mammals, and elasmobranchs),
which requires substantially greater bite area and force
to process. In contrast, juvenile tiger sharks consume
smaller prey, such as fishes, crustaceans, and inverte-
brates. Our data reveal significant morphological shifts
in an apex predator, which could have effects for other
species that tiger sharks consume and interact with. J.
Morphol. 277:556–564, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

As organisms mature, they often undergo ecolog-
ical transitions in both movement patterns and

diet, among other changes (Calder, 1984; Werner
and Gillam, 1984; Schmidt-Nielsen, 1984; Wain-
wright et al., 1991; Eggold and Motta, 1992; Car-
rier, 1996; Tyler-Bonner and Horn, 2000). For
example, many fish species transition from being
relatively sedentary in shallow nursery areas to
more mobile once they mature and leave the nurs-
ery for the open ocean (Beck et al., 2001). Dietary
shifts are also common in animals, such as ontoge-
netic changes in diet from insectivory to herbivory
in lizards (Herrel et al., 2004), or between soft and
hard prey in fish (Alfaro et al., 2005). Such ecologi-
cal shifts are often accompanied by notable
changes in body shape as animals’ age (LaBar-
bera, 1989; Carrier, 1996). For apex predators that
can have profound effects on other ecosystem proc-
esses (Estes et al., 2011), ontogenetic changes in
ecology and body shape can have substantial
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impacts on other species, especially those they
directly prey on.

Tiger sharks (Galeocerdo cuvier) are generalist
apex predators in temperate and tropical seas
(Cortes, 1999; Heithaus, 2001; Compagno et al.,
2005). They are highly migratory, linking dispar-
ate habitats (e.g., Heithaus et al., 2007; Fitzpa-
trick et al., 2012; Papastamatiou et al., 2013;
Ferriera et al., 2015; Hammerschlag et al., 2012).
Whereas juvenile tiger sharks are able to make
long-distance migrations, they exhibit more cir-
cumscribed movements than adults do (e.g., Werry
et al., 2014; Alfonso and Hazin, 2015; Lea et al.,
2015), although around Hawaii, juvenile tiger
sharks appear to be more wide ranging than adult
females (Meyer et al. 2009). Tiger sharks have a
diverse diet, but undergo an ontogenetic diet
expansion with age (Lowe et al., 1996; Cortes,
1999; Simpfendorfer et al., 2001, Heithaus, 2001).
As juveniles, tiger sharks consume primarily fish,
crustaceans, and other organisms, whereas as
adults their diet expands to also include larger
and harder prey, such as sea turtles, marine mam-
mals, and other sharks (Lowe et al., 1996; Cortes,
1999; Simpfendorfer et al., 2001; Heithaus, 2001).
These two ontogenetic ecological shifts (changes in
overall migration patterns and harder prey size
and rigidity) may be accompanied by changes in
body shape as tiger sharks mature.

Sharks, like other fishes (Thomson and Simanek
1977; Webb 1984; Lauder, 2000; Lauder et al.,
2003; Blake, 2004), exhibit wide variation in cau-
dal fin shape (Thomson and Simanek, 1977; Ferry
and Lauder, 1996; Wilga and Lauder, 2002,
2004a,b; Flammang et al., 2011). In general, high-
performance sharks, such as some laminid species
(e.g., white sharks, Carcharodon carcharias, mako
sharks, Isurus) tend to have stiff symmetrical tails
that may allow them to produce higher thrust
forces, and therefore swim at faster speeds (Ling-
ham-Soliar, 2005a,b). On the other extreme, slower
moving sharks, such as nurse (Ginglystoma cirra-
tum) or some cow sharks (Hexanchidae) exhibit
more compliant and asymmetrical tails in which
the upper lobe is substantially longer than the
lower lobe (Thomson and Simanek, 1977; Wilga
and Lauder, 2004a; Reiss and Bonnan, 2010).

Prior theoretical and empirical work suggests
that stiff symmetrical tails are suited for open-
water fast cruising whereas compliant, asymmetri-
cal tails are better suited for slower swimming or
maneuvering in complex environments (Thomson
and Simanek, 1977; Wilga and Lauder, 2004a).
However, there has been little analysis of whether
similar transitions also occur intra-specifically
among ontogenetic classes within a shark species.
In general, the available data for smaller shark
species, such as spiny dogfish (Squalus acanthias),
blacktip (Carcharhinus limbatus), and nurse
sharks (Ginglymostoma cirratum) show isometric

changes in the caudal fin as they age (Reiss and
Bonnan, 2010; Irschick and Hammerschlag, 2014),
whereas in larger apex shark species, such as
white (Carcharodon carcharias), tiger (Galeocerdo
cuvier), and bull sharks (Carcharhinus leucas),
caudal fin area seems to scale with negative allom-
etry (Lingham-Soliar, 2005a; Irschick and Ham-
merschlag, 2014). However, even among the larger
species, these studies only examined either
changes in area, or changes in length using linear
morphometric measurements (e.g., length of the
lower lobe of caudal fin), and did not examine
overall shape changes of the caudal fin. Given that
linear measures are not always representative of
variation in shape, more data on how caudal fin
shape can change with size is needed.

For tiger sharks, the transition from consuming
generally smaller and softer prey in juveniles to
larger and harder prey as adults could be linked
with the potential for ontogenetic changes in head
shape. Prior studies, mostly with terrestrial verte-
brates, have generally shown that wider and
deeper heads translate into stronger bites,
although the dynamics of biting are complex, and
depend on various factors, such as mechanical
leverage and shear forces generated by teeth (Her-
rel et al., 1996; Huber et al., 2006, 2009; Habegger
et al., 2012). Tiger sharks are unique among
sharks in having a relatively broad head (in dorsal
view), whereas most sharks have a more conical
head shape that reduces drag (Lowe et al., 1996;
Huber et al., 2006; Wirsing et al., 2006). The con-
sumption of large hard prey such as adult sea tur-
tles suggests that high bite forces and powerful
jaws will be emphasized in adult tiger sharks,
which may lead to corresponding shape changes in
the head that enable increased bite area and force.
Of course, other changes in the size, shape, and
number of teeth, will also impact these parame-
ters, as shown by Whitenack and Motta (2010)
and Habegger et al. (2012), although we present
no data on how these traits change with body size
in tiger sharks. As body size and age are corre-
lated within shark species (e.g., Casey et al., 1985;
Casey and Natanson, 1992), we therefore have the
opportunity to examine ontogenetic morphological
changes in tiger sharks.

Accordingly, we set out to address two primary
questions in tiger sharks. First, how does the
shape and area of the caudal fin change with age?
Second, how does the shape and area of the head,
particularly for the dorsal side, change with age in
tiger sharks? To address these questions, we col-
lected data on 18 live tiger sharks captured and
released in the Bahamas and Southern Florida
varying more than threefold in length. Due to pos-
sible post-mortem changes in shape, using live
animals for measurements of head and tail shape
is preferable to using specimens in natural history
collections. This could be especially true for
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understanding relative proportions of tails and the
head, which could be altered during preservation.
We then used Elliptical Fourier Analysis (EFA) to
quantify shape changes in the caudal fin and head
as tiger sharks mature.

MATERIALS AND METHODS
Capturing Sharks

Tiger sharks were captured using standardized circle-hook
drumlines (Gallagher et al., 2014). Briefly, drumlines were com-
posed of a weighted base that sits on the seafloor. Attached to
the weight was a 23-m monofilament line (400 kg test) that ter-
minated in a baited 16/0 offset circle hook. The gear was left
for 1 h before retrieval. When a tiger shark was captured, it
was restrained in the water alongside the stern of the boat or
secured to a partially submerged platform. Because tiger
sharks are obligate ram ventilators, a hose was then placed in
the mouth to pump water over the gills. Pre-caudal length
(PCL), a standard metric of shark body length, was measured
on all sharks following standard protocols. The sharks were
stretched out carefully either on the platform noted above, or
alongside the platform, and a flexible tape measure was used to
measure the length between the tip of the nose to the insertion
of the caudal fin (PCL). Every effort was made to avoid the

sharks being bent, which would increase measurement error.
All sharks were sampled at various locations of Southern Flor-
ida and the Northern Bahamas, which included the following
areas: throughout the middle Florida Keys (USA), namely Bis-
cayne Bay, Florida Bay and the reefs off Islamorada, Florida.
Further, we performed additional sampling around Grand
Bahama, Bahamas. We obtained head data for 18 sharks, and
caudal fin data for 16 sharks. The same set of measures was
not always possible for every individual due to contingencies
such as releasing the shark to maintain health or if parts of
the tail were injured or missing. All sharks used for our data
were captured between July 2012 and May 2015. This work
was done in accordance with an approved animal care and use
protocol (IACUC 12-280 to Neil Hammerschlag at the Univer-
sity of Miami).

Images Captured

We used several different handheld digital cameras over the
course of the three-year period to obtain lateral images of the
caudal fin (Fig. 1). One person would hold the caudal fin by
both the caudal peduncle (to support the fin) and by the tip of
the upper lobe, so that the fin was parallel to the camera. The
fin was kept in a straight (unbent) position to avoid any confor-
mational changes that might result in measurement error. The
individual holding the fin would also hold a short ruler
(15.24 cm) parallel to the fin to provide a scale bar. The images
were taken parallel to the fin to limit parallax. The same proce-
dure was followed for the head, as images were taken from a
dorsal view and parallel to the top of the head, with a ruler
placed on the top of the head (Fig. 1).

Elliptical Fourier analysis, calculation of areas, and
statistical analyses. We used the magnetic lasso tool and fill
layer option in Adobe Photoshop CS6 on a PC to digitally isolate
grayscale silhouettes of the caudal fins and heads for the EFA.
For the caudal fin, we used the insertion point of the caudal fin
on both dorsal and ventral sides and then drew a straight line
between these points as the cutoff point for the caudal fin (Fig 1).
For the head, we used the anterior position of the eyes, which
can be seen from above (Fig. 1) as the landmarks for the head,
and drew a straight line between these points. Our method does
not take into account the complex curvature and anatomy of the
lower jaw of tiger sharks, but as the top of the head in tiger
sharks is generally relatively flat compared to other sharks,
these digital head cut-outs are representative of key aspects of
head shape, especially head width, and the degree to which the
head becomes more rounded. EFA takes the outline of closed two-
dimensional silhouettes and maps the distance from a specified
origin to each point on the outline to create a polar coordinate
function, which can be expressed with a set of harmonics, with
numbers ranging from one to infinity. The lower harmonics
roughly describe features of outlines while the higher harmonics
capture more subtle variation; so using a greater number of har-
monics allows us to capture increased subtle variation in shape.
These harmonic coefficients can then be condensed into a set of
principal component analysis (PCA, Lestrel, 2008). We therefore
used PCA to condense the information into three PCs (for caudal
fins, which accounted for 93% of total variation) and two princi-
pal components (PCs, for heads, which accounted for 95% of total
variation) principal components.

To calculate the areas of the caudal fin and head, we used the
freehand selections tool in ImageJ (Rasband, 199722014) to
obtain area measurements of heads and fins. Head and caudal
fin areas were calculated from digital cut-outs used for the Ellip-
tical Fourier analyses. Finally, we measured head length as the
distance from the middle of the line connecting the eyes to the tip
of the snout (Fig. 1). PCL, the linear distance between the tip of
the snout to the insertion of the caudal fin, was our scaling metric
(following Irschick and Hammerschlag, 2014).

All statistics were performed using Minitab 17 on a PC
laptop (Minitab 17 Statistical Software (2010). [Computer soft-
ware]. State College, PA: Minitab, Inc. (www.minitab.com)). To
calculate scaling coefficients, we regressed head and caudal fin

Fig. 1. (A) An image of a caudal fin used for area and shape
measurements. (B) The same caudal fin shown in (A) but cut-out
for measurement of area and shape. (C) An image of a tiger
shark head taken from a dorsal view. (D) The same head image
from (C) but cut-out for measurement of area and shape. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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area, as well as head length (in separate regressions) against
PCL values using linear least-squares regression, which gener-
ated the statistics (e.g., F-values) shown in Table 1. All varia-
bles were log-transformed prior to calculating regressions.
Because the interpretation of scaling coefficients is controver-
sial and often a point of confusion (Smith, 2009), we opted to
use reduced major axis regression (RMA) slopes to compare
against the hypothesized isometric values (expected slope of 2
for an area versus length, and 1 for a length versus a length).
The RMA slope is the linear least-squares slope divided by the
correlation coefficient. We then used standardized t-tests to test
the predictions versus actual RMA slopes. In addition, we ran
regressions on plots of PCL vs. head and caudal fin shape,

respectively. We used the standard criterion of P<0.05 as our
metric of statistical significance.

RESULTS

Both caudal fin area and head area showed a
positive relationship with PCL (Table 1, Fig. 2).
Caudal fin area did not scale significantly different
from the expected isometric value of 2 (Table 1,
Fig. 2), even though the degree of variability in
this trait was far less than for head area. Head
area also showed no substantial deviation from
the expected isometric slope of 2 (Table 1). Finally,

TABLE 1. Equations from linear-least squares regressions for the scaling of caudal fin area, head area, and head length, versus
PCL among a sample of tiger sharks

Variable Slope RMA slope y-int F df P R2 T-value
P-value
(t-test)

Caudal fin area 1.76 1 0.13 1.83 21.12 1 0.31 166.4 2,13 <0.001 0.93 1.30 >0.40
Head area 1.18 6 0.35 1.82 20.27 6 0.80 11.6 2,16 0.0037 0.42 0.51 >0.50
Head length 0.76 6 0.11 0.88 20.58 6 0.26 47.2 2,16 <0.001 0.75 1.09 >0.40

The primary statistics (F-values, P-values) are from linear least-squares regressions, but RMA regression slopes are also provided
to correct for error in the independent variable. The t-values are from t-tests comparing the actual slope versus an expected slope
using the RMA slopes.

Fig. 2. (A) A plot of log-transformed values of pre-caudal
length (x-axis) versus log-transformed caudal fin area (y-axis).
(B) A plot of log-transformed values of PCL (x-axis) versus log-
transformed head area (y-axis). Pre-caudal length (cm).

TABLE 2. Results from PCA of seven harmonics from EFA that
described caudal fin shape among a sample of tiger sharks

PC1 PC2 PC3 PC4

Eigenvalue 0.006 0.004 0.002 0.0004
% variation

explained
47 30 16 3

A1 <0.0001 <0.0001 <0.0001 <0.0001
A2 20.2032 20.1450 0.3098 20.4621
A3 20.0750 20.0253 20.0024 20.2773
A4 0.0193 0.0151 0.1125 20.1857
A5 0.0224 0.0316 0.0147 0.0271
A6 0.0162 20.0119 0.0435 0.0870
A7 20.0264 20.0317 20.0232 0.1521
B1 <0.0001 <0.0001 <0.0001 <0.0001
B2 0.0555 0.3493 0.3518 0.1928
B3 0.1036 0.2493 0.1948 0.1565
B4 20.0107 0.2315 0.2464 0.2532
B5 20.0418 0.0470 0.1109 0.1437
B6 20.0633 20.0038 0.0710 0.0743
B7 20.0190 20.0696 20.0251 20.0180
C1 <0.0001 <0.0001 <0.0001 <0.0001
C2 20.7684 0.4708 20.3747 20.0781
C3 0.0185 0.3926 0.4663 20.4058
C4 0.0899 0.1794 20.1519 20.0962
C5 0.1854 0.0748 0.0547 20.1340
C6 0.0230 20.0414 20.1468 0.2483
C7 20.0126 20.0337 0.0047 0.1085
D1 0.4579 0.2343 20.4658 20.3967
D2 0.2271 0.4076 20.1202 0.1582
D3 0.1280 0.1976 20.0510 0.0656
D4 20.0166 0.0712 0.0235 0.1433
D5 20.0899 20.1043 0.0811 0.0296
D6 20.1049 20.1344 0.0391 0.0524
D7 20.0156 20.1437 0.0128 20.0954

Because each EFA harmonic had four coefficients (A, B, C, and
D), there were 28 variables in the PCA.
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head length also showed a positive relationship
with PCL, with no significant deviation from the
expected isometric slope of 1 (Table 1).

Tables 2 and 3 provide loadings for the harmon-
ics from the EFA for the caudal fin and head
shape, respectively. The harmonics cannot easily
be understood or compared to traditional linear
morphological variables such as head length, and
as noted by other authors, the best method for
interpretation is through visualization. Therefore,
Figures 3 and 4 provide plots of PCs 1 and 2 for
the multivariate analysis of the harmonics for cau-
dal fin shape and head shape, respectively. Along-
side each point is the corresponding silhouette for
caudal fins and heads for that individual. For the
caudal fins (Fig. 3), the first two PCs explain 47%
and 30% of the total shape variation (77% total,
Table 2). The first PC describes an axis of relative
symmetry of the upper and lower lobes, in which
individuals with high values of PC 1 have more
symmetrical lobes, whereas individuals with low
values of PC 1 have more asymmetrical lobes,
with the lower lobe being substantially smaller
than the upper lobe. The second PC exhibits less
variation and is more challenging to interpret, but
appears to reflect variation in the aspect ratio of
the fins, with individuals with high values having
shorter but wider fins, and individuals with low
values have higher and narrower fins.

For head shape (Fig. 4), the first two PCs explain
75% and 20% of the total shape variation (95%
total, Table 3). The first PC appears to describe an

Fig. 4. A plot of PC 1 (x-axis) versus PC 2 (y-axis) from the
PCA on head shape based on the EFA. Silhouettes of heads are
included next to a variety of points to demonstrate the range of
head shapes among the tiger sharks sampled.

TABLE 3. Results from PCA of seven harmonics from EFA that
described head shape among a sample of tiger sharks

PC1 PC2 PC3 PC4

Eigenvalue 0.0025 0.0007 0.00009 0.00003
% variation

explained
75 20 3 1

A1 <0.0001 0 <0.0001 <0.0001
A2 0.0442 20.3452 20.0859 0.4403
A3 0.2218 0.0409 0.0896 0.0009
A4 0.0297 20.3038 20.0444 0.2036
A5 0.0997 0.0248 0.1200 0.0422
A6 0.0040 20.0817 20.0061 0.1125
A7 0.0290 0.0226 20.0195 0.0089
B1 <0.0001 <0.0001 <0.0001 <0.0001
B2 0.1150 0.0181 20.3902 20.5425
B3 20.0037 0.2124 20.0370 0.1608
B4 0.0028 0.0167 20.1900 0.0229
B5 20.0046 0.1397 20.0326 0.1440
B6 20.0753 0.0123 20.0673 0.0816
B7 20.0176 0.1485 20.0005 0.0464
C1 <0.0001 <0.0001 <0.0001 <0.0001
C2 0.0584 0.0605 20.6687 0.3857
C3 20.0100 0.1643 20.0317 0.2554
C4 20.1400 0.0171 0.1117 0.3354
C5 20.0089 0.1117 20.0136 0.0228
C6 20.0477 0.0064 20.1117 0.0143
C7 20.0093 0.0892 0.0298 0.0597
D1 20.9413 20.0712 20.0663 20.0845
D2 20.0603 0.7790 0.0289 0.0852
D3 20.0006 0.0219 20.5317 20.1452
D4 20.0005 0.1071 20.0097 0.1393
D5 0.0087 20.0084 0.0906 20.0101
D6 0.0149 20.1276 20.0262 20.0429
D7 0.0479 20.0030 0.0365 20.1112

Because each EFA harmonic had four coefficients (A, B, C, and
D), there were 28 variables in the PCA.

Fig. 3. A plot of PC 1 (x-axis) versus PC 2 (y-axis) from the
PCA on caudal fin shape based on the EFA. Silhouettes of caudal
fins are included next to a variety of points to demonstrate the
range of caudal fin shapes among the tiger sharks sampled.
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axis of relative elongation, with individuals with
large values having relatively wide, blunt heads,
and individuals with small values having more
elongate, rounded heads, although the overall dif-
ference does not appear to be substantial. The sec-
ond PC, as with the caudal fins, exhibits far less
variation, and appears to present no clear variation
in shape among different individuals.

The values for PC 1 for the caudal fin were posi-
tively correlated with PCL (r250.50, F1,13513.7,
P<0.005), revealing a proportional change in
shape. In juvenile tiger sharks, the lower lobe of
the caudal fin was relatively shorter in relation to
the upper lobe, leading to more asymmetrical fins
(Fig. 5). As tiger sharks mature, the upper and
lower lobes of the caudal fins become gradually
more symmetrical, resulting in adults with far
more symmetrical fins compared to juveniles (Figs.
5 and 6). Pre-caudal length showed no significant
relationship with either PC 2 (r250.08, F1,14-1.29,
P>0.30), or PC 3 (r250.002, F1,1450.03, P>0.75) for
caudal fin shape. There was a positive relationship
between PC 1 for head shape versus PCL
(r250.33, F2,1658.0, P<0.025, Fig. 7). In juvenile

tiger sharks, the head is more rounded anteriorly,
and is less wide, and gradually transitions to a
wider and blunter shape in adults, although the
overall degree of shape change seems less dra-
matic compared to the caudal fin. However, PCL
showed no significant relationship with PC 2
(r250.001, F1,1650.01, P>0.75) for head shape. As
additional PCs beyond the first one for both caudal
fin shape and head shape head shape did not show
significant relationships with body size, therefore
we do not discuss this further.

DISCUSSION

Our analysis reveals that caudal fin area, head
area, and head length, each scaled isometrically as
tiger sharks grow, and both caudal fin and head
shape change systematically with size in tiger
sharks. Juvenile tiger sharks have relatively
asymmetrical caudal fins in which the lower lobe
is smaller than the upper lobe, whereas adults dis-
play a more symmetrical design. Juvenile tiger
sharks display a more conical nose, whereas
adults present a broader blunter nose in dorsal
view.

Functional and ecological data are both essential
for interpreting changes in body form among and
within species (Hildebrand et al., 1985; Ricklefs
and Miles 1994; Lauder and Reilly, 1996; Irschick
and Kuo, 2012). While we lack functional data on
how the caudal fin is employed in tiger sharks,
prior experimental and theoretical data
(Alexander, 1965; Webb, 1984; Lauder, 1989; Ferry
and Lauder, 1996; Liao and Lauder, 2000; Lauder,
2000; Wilga and Lauder, 2002; Lauder et al., 2003;
Blake, 2004) provides some context. Shark species
differ in the underlying structure and degree of
symmetry of the caudal fin, such as contrasting
the more symmetrical caudal fin shape of white

Fig. 5. Values of pre-caudal length (x-axis) versus PC 1 (y-
axis) for caudal fin shape. Each value represents an individual
shark. The silhouettes of caudal fins are from individual sharks.
Note the transition from relatively asymmetrical tails as juve-
niles to more symmetrical tails as adults.

Fig. 6. Representative tiger shark silhouettes showing the pro-
portional change in caudal fin area with size. The fins on the sil-
houette are digital cut-outs taken from actual sharks.

Fig. 7. Values of pre-caudal length (x-axis) versus PC 1 (y-
axis) for head shape. Each value represents an individual shark.
The silhouettes of heads are from individual sharks. Note the
transition from relatively conical heads as juveniles to wide
blunt heads as adults.
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and mako sharks (Donley et al., 2004; Wilga and
Lauder, 2004a; Lingham-Soliar, 2005a,b; see also
Montani, 2002) versus the less symmetrical caudal
fin shape of slow cruisers such as nurse sharks or
cow sharks (Thomson and Simanek, 1977; Wilga
and Lauder, 2004a). Some fish species with hetero-
cercal tails (e.g., leopard sharks (Triakis semifas-
ciata), bamboo sharks (Chiloscyllium plagiosum),
and spiny dogfish (Squalus acanthias) show that
they, and sturgeon (Acipenseridae) tend to swim at
a slight upward angle to the flow to offset the
asymmetrical caudal fin’s reactionary force that
tends to push the head downwards, resulting in
the shark moving horizontally without change in
vertical position (Ferry and Lauder, 1996; Wilga
and Lauder 2004a, 2004a; Flammang et al., 2011).
Fluid dynamics could be used to compare the
wake of juvenile vs adult tiger shark tail models
to test for functional differences that may be
attributed to shape differences if live animals
could be studied in a controlled laboratory setting.
Furthermore, experiments with simple robotic
models of different tail shapes has shown that tail
shape can influence swimming speed, and that
there is a tradeoff between speed and cost of
transport (Lauder et al., 2011, 2012). Based on
these data, the more heterocercal shape in juve-
niles may allow somewhat greater relative swim-
ming speeds, but at increased cost of transport
relative to the more symmetrical shape in adults.
The more symmetrical tail shape in adults might
also increase the lift to drag ratio and perhaps
change the angle of thrust.

Tracking data is revealing behavioral difference
between juvenile and adult tiger sharks in their
propensity to make long-distance migrations
(Meyer et al., 2009; Hammerschlag et al., 2012;
Papastamatiou et al., 2013). Adult tiger sharks
will regularly migrate thousands of kilometers,
often moving at relatively high rates of speed (e.g.,
Holland et al., 1999, Papastamatiou et al., 2013,
Ferriera et al., 2015, Hammerschlag et al., 2012).
While more comparative tracking data on juvenile
tiger sharks is needed, available information sug-
gest that their movement patterns are more
confined (Meyer et al., 2009; Werry et al., 2014,
Alfonso and Hazin, 2015, Lea et al., 2015). Prior
research shows that young sharks often have
higher site-fidelity or smaller home range com-
pared to adults, perhaps due to the threat of pre-
dation, lack of experience, or energetic and
physiological constraints (see Speed et al., 2010).
Thus, one possible explanation for this ontogenetic
shift is that the more symmetrical fin of adult
tiger sharks is better suited for long-distance
migrations, which are often undertaken at rela-
tively high rates of movement (for example, mean
swimming speeds of 3.85 km/h in Holland et al.,
1999, dispersion rates of up to 50 km/day in Ham-
merschlag et al. 2012) and the more asymmetrical

fin of juvenile tiger sharks is better suited for an
active lifestyle of catching fish, and for moving
within relatively smaller home ranges. While labo-
ratory functional studies with tiger sharks would
be challenging, field studies examining rates of
movement in tiger sharks of varying sizes, as well
as modeling locomotion, perhaps using 3D-printed
models in flow-tanks, would be valuable in under-
standing these patterns.

Head shape in vertebrates is closely linked to
diet (Motta, 2004; Alfaro et al., 2005; Dean et al.,
2007a,b), and prior work has shown variation
among shark species in teeth and jaw morphology
(Huber and Motta, 2004, Huber et al., 2005, 2006,
2008, 2009; Lowry et al., 2007; Ramsay and Wilga,
2007; Whitenack and Motta, 2010). Sharks that
eat larger prey (e.g., white sharks, bull sharks,
tiger sharks) present triangular blade-like teeth
designed for shearing off chunks of tough muscle
and bone (Frazzetta, 1988; Huber et al., 2009;
Whitenack and Motta, 2010; Habegger et al.,
2012). Sharks that specialize on smaller fish typi-
cally present dagger-like teeth designed for grab-
bing slippery prey that are consumed whole, and
smaller heads and gapes. Our data show that on
the one hand, juveniles have relatively larger
heads than adults, but also that their heads are
more conical. Various head size metrics scale with
negative allometry in leopard sharks and blacktip
sharks (Lowry et al., 2007; Irschick and Hammers-
chlag, 2014), and with isometry in larger bull and
nurse sharks. The relatively wide blunt heads of
tiger sharks is consistent with other data indicat-
ing that broad heads can increase bite force by
allowing greater attachment area for muscles
(Meyers et al., 2002; Huber et al., 2009), and this
may allow adult tiger sharks to more effectively
shear through larger and harder prey they con-
sume as adults (i.e., turtles, mammals).

Previous work (Frazetta, 1988[AQ]; Whitenack
and Motta, 2010; Habegger et al., 2012) shows
that the teeth structure of sharks is correlated
with bite force, and their ability to shear through
hard prey. As noted by Whitenack and Motta
(2010), tiger shark teeth are designed for shearing
hard prey such as turtle shells, and that a large
bite circumference would facilitate this behavior,
so there is a clear interaction between head shape
and tooth shape. Studies relating tooth shape and
head shape in adult versus juvenile tiger sharks
would therefore be interesting, especially given
documented changes in biting performance across
ontogeny in other sharks (e.g., blacktip sharks,
Huber et al. 2009). In conclusion, we have demon-
strated changes in caudal fin shape and head
shape across ontogeny in a predatory shark. Our
work sheds light on how ontogenetic changes in
morphology could potentially impact the ecology of
a key predator in tropical seas.
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