that there is likely to be a ‘downside to diversity’, such that
the species comprising more-diverse communities are in-
herently at greater risk of extinction than are species of
depauperate communities.

The downside of diversity: a tropical problem?
The most biodiverse communities in the world are located
in the tropics [6]. Tropical species are widely believed to
be more sensitive to climate change than their temperate
counterparts because of (i) the absence of a marked lati-
tudinal gradient of temperature within the tropics, which
results in greater distances between current and future
climate analogs, and hence faster climate-change veloci-
ties, necessitating faster rates of species migration [7,8];
(i) rapid rates of habitat loss which decrease habitat
availability and increase the distances that species will
be required to migrate to keep pace with changing cli-
mates [9]; and (iii) the prevalence of species with narrow
climatic niches due to the short- and long-term climatic
stability of tropical environments [10]. As discussed
above, the diverse communities of the tropics will also
generally exhibit intense interspecific competition and
niche packing. Therefore, tropical species can be pre-
dicted to have narrower niches, even regarding non-
climatic factors such as diet preference and habitat use,
than their temperate counterparts [11]. According to our
proposed ‘downside of diversity’ hypothesis, extinction
probabilities may therefore be even higher in the biologi-
cally-diverse communities of the tropics than was previ-
ously anticipated.

With the massive number of extinctions that are fore-
cast as we enter the ‘Anthropocene’ [12], it is crucial that
we identify the systems and communities under greatest

Trends in Ecology & Evolution June 2015, Vol. 30, No. 6

risk of species loss — we cannot afford to wait to construct
models post hoc based on observed extinctions. Combining
the theories synthesized by Gallagher et al. with the classic
theory of niche packing, we can predict that highly-speciose
communities and their constituent species are at high risk
of extinction from environmental disturbances such as
climate change and habitat loss. Given this potential
downside to diversity, we argue that there is additional
motivation to prioritize the conservation of high-diversity
communities in the tropics.
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[2] suggest that extinction probabilities are highest in
regions where there is a higher density of narrow-niched
species. More specifically, Stroud and Feeley [2] suggest
that incorporating theory of ‘niche-packing’ in our frame-
work [1] might also be useful for predicting where extinc-
tions may occur, due to the fact that competition between
species will result in higher degrees of specialization. We
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commend Stroud and Feely [2] for highlighting these
issues, but the framework we presented in [1] already
integrated the theory of niche packing as it relates to
extinction risk, although the term ‘niche packing’ was
not explicitly used. In fact, in our framework, we included
geographic range and population density, the two main
points of Stroud and Feeley [2], as two of several param-
eters for estimating resilience.

There are also a few important assumptions provided in
the discourse by Stroud and Feely [2] that we feel should be
addressed. We are in agreement that the number of spe-
cialists inhabiting a specific area may indeed be frequency
dependent due to competition and niche packing. However,
stating that niche packing can generally predict extinction
is not well supported currently, because the manner in
which specialization acts on extinction risk is not neces-
sarily a frequency-dependent process [3]. For example,
Smith et al. [4] found that disease-mediated extinctions
in amphibians in Central America created a homogenizing
effect on the remaining species, thus rendering them in-
creasingly ‘generalist’. In addition, working across a lati-
tudinal gradient in Central America, Lips et al. [5] found
that the degree of decline of amphibian species did not
differ among sites (i.e., different communities), but instead
found that specific ecological traits (aquatic affinity, eleva-
tional specialization, and body size) were strong predictors
of decline. Additionally, certain traits may weigh different-
ly in how they contribute to the overall extinction risk of
a species and, as we mentioned in our original paper [1],
researchers are tasked at elucidating these patterns.
Modeling approaches would be valuable for testing these
assumptions.

In their response [2], Stroud and Feely also contend that
‘species comprising more diverse communities are inher-
ently at a greater risk of extinction than are species of
depauperate communities’, and point to the tropics as an
example. While one might assume a higher level of extinc-
tion risk in tropical areas [6], this statement is suggestive
that biodiversity itself promotes extinction. In fact, a large
body of research shows that community diversity drives
ecosystem stability to environmental disturbance [7,8]. In-
deed, maintenance of biodiversity is a goal of conservation
biologists, not only to limit extinction, but also to promote
community resilience to human threats [7,8]. Moreover,
the same argument could be made for temperate regions
with lower diversity of species, where communities in these
areas may retain a smaller overall ‘trait space’. A distur-
bance of this community could have a similar (or even
greater) net effect on vulnerability or extinction as one
comprising many specialists in the tropics. The difficulty in
validating these hypothetical scenarios is consistent with
the goal of our original article of pointing out opportunities
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for theoreticians and modelers to use a framework and test
these ideas.

Discussions made by both papers [1,2] on the utility of
evolutionary and ecological theory to predict extinction
risk also assume that specialists retain lower genetic
variation in traits that are under selection in altered
habitats. Data on specific traits for ascertaining thermal
tolerance, for example, are likely to be lacking for large
vertebrates. However, work on Drosophila spp. has shown
that traits important for driving thermal tolerance have
relatively high phylogenetic inertia, suggesting that adap-
tive distributional responses to climate change are limited
[9]. The discovery of evolutionary traps in many larger
vertebrate species can help identify where these types of
ecological ‘dead-ends’ might lie, and could be used to
launch investigations into the role of specialization on
extinction risk [10].

We are grateful for the productive discussions that our
paper has already generated. We believe that the ideas
added by Stroud and Feely [2] validate and help highlight
the concepts espoused in our initial paper and those else-
where [11]. We hope that such discourse will continue to
generate new questions, focused investigations, and em-
pirical data using our flexible framework that ultimately
fosters the conservation of threatened species.
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